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TRIPLE-WAVE POTENTIAL FLOWS OF A POLYTROPIC GAS* 

S.V. MELESHKO 

A system of equations describing triple-wave solutions for unsteady 
isentropic potential flows of a polytropic gas was derived in /l/. A 
family of exact triple-wave solutions of the equations of gas dynamics 
with three arbitrary functions of one argument was constructed in /2/ 
for i<T<2. Some applications and properties of this family were 
studied. In this paper we show that the triple-wave equations of /l/ 
are a system in involution and depend on one arbitrary function of two 
arguments. 

1. The equations of motionof polytropicgas in the unsteady isentropic case can be 
written in the form 

duldt + V8 = 0, d8/dt f x8 div u = 0 

0 = c=ix, x = y - 1 > 0, dtdt = am + u,aiaxa 
(I.11 
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where u = (ur. Ll*, (bg)' is the velocity vector, c the velocity of sound, y is the polytropic 
exponent and summation from 1 to 3 is implied over repeating Greek indices. We consider 
triple-wave potential flows 

rot " = 0 (f.2) 

Two possible cases should be considered: either the components of the velocity vector 

Y* %t a.1 are functionally independent in some region D of the space x,, I%, xg, t, and then 
we must take 0 = 8 fur, u,, uQ) in this region, or n1* % &a are functionally dependent in D 

(e.g., % = @ (%, 4). 

2. We will first consider the case of functionally independent u,,u~,IA~_ Substituting 

U = 0 (ml, US, %) into the original Eqs.(l.l) and using the potential fl.ow condition (1.2), we 
obtain an undetermined system of quasilinear differential equations 

(2.1) 

where E is the 3x3 identity matrix. Without loss of generality, we will assume *a#0 (this 
is accomplished by a rotation of the coordinate axes). 

Consistency analysis of the overdetermined system of differential Eqs.f2.1) leads to the 
conclusion that the general solution of this system contains at most two arbitrary functions 
of two arguments. We first have to elucidate the question of algebraic independence with 
respect to high-order (second-order) derivatives of part of the extended equations and express 
the remaining equations in terms of the former equations. 

From the prolongations DiS = O,D,@ = O,D,S = O(D, are total. derivatives with respect 
to xk, k = 0, 1, 2,3) we determine the derivatives II-~,, u,~~, <u,~~ 3 Puldxidxk, i = 1, 2,3), and 
then substitute these derivatives into the remaining extended equations of system (2.1): 
D&r = 0, Dxfl = 0 (k = 0, 1, 2,3). We then obtain 

(2.2) 

Here the first row identifies the variables for which the coefficients are given in the follow- 
ing rows, and the last column represents the left-hand sides of the equations from which these 
coefficients are taken. 

From the form of the matrices M, and (ol it follows that in this case 

II~,CP~+M~r=O,(i,j=f,2) (2.3) 
The solution of system (2.1) should thus satisfy some additional first-order equations: 

D&D + AJM-P - &D,S = 0 12.4 
DJf, - MaDa@ = 0 (2.5) 

Dafi + &&fi - HAS = 0 (2.6) 

These equations must be considered simultaneously with the rest of the system. 
Of the equations (2.4)-(2.6) only the third equation in (2.4) does not identically vanish 

in view of system (2.1): 

Dofr + &&fa - $AScc - 33,%&% - %%&S, - %bhS,= 0 (2.7) 

Using system (2.1) to eliminate the derivatives ZJ.~ and z+,~ from (2.71, we obtain a 

quadratic form (relative to the derivativesni,, (i,j = 1,2,3; j <i) fs = 0, whose coefficients 
are expressible in terms of 6, Qi, @It> where ei, = B29A@+ For instance, the coefficient 
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of Ua3.8 equals @&IJ(M1l =% (1 i-8jj)+$j(l+ Bit) - 28ioj8i,), the form of all other coef- 
ficients is quite cumbersome. 

If M,, = 0 for any rotation of the coordinate axes, then we must have (the missing 

equalities are obtained by a cyclic permutation of the indices) 

wb + wb (1 + ed - e I f3 2 0 1s - eee 1 s 12 - -0(123) 

M,, = 0, M,, = 0, M,, = 0 
(2.8) 

The last system of equations is linear and homogeneous with reSPeCt to hj. Cl + 04 (4 

j = 1,2,3; i # j) and its determinant equals 2(~8)~(8,8, - %8)e. Therefore, if 8&e -xXe#O, 
then Bi, = 0, eii = -1 (i, j = 1, 2,3; i # j). Hence 

0 = co - f 9 tut + ci)a 
i$ 

(q = const) 

Here fs 5 0, system (2.1) is in involution and its general solution contains twoarbitrary 
functions of two arguments. It should be noted, however, that the change of variables q' = 

51 + cft reduces representation (2.9) to the Bernoulli integral, and the gas motion described 
by the system of Eqs.(2.1) corresponds to the general case of three-dimensional steady poten- 
tial flows. 

If 8,8,-x8 = 0, then from (2.8) it follows that y-i- 2 = 0, which contradicts the con- 
dition x> 0. Thus, without loss of generality we may take M,,# 0, 

Repeating the same procedure as in the derivation of (1.2)-(1.4), with f1 replaced by 

fl’ = (fl> f5)‘, we conclude that Eqs.(2.2)-(2.4), (2.6) preserve their form (with fl replaced 

by (f,, fs)‘). Therefore, only the following equation is new relative to Eqs.(2.4)-(2.6): 

fs = DOfL + WLfs - ad,& - c4& = 0 (2.10) 
ah., = afsl&i, k (i = 1,2, 3; k = 1. 2) 

Carrying out all the prolongations indicated in (2.10) and eliminating the derivatives 

*,0 in the resulting expression, we obtain 

f6 = UB.~ (alaWp + a&,44 = 0 (2.11) 

Manual substitution of the remaining main derivatives of the system of Eqs.(2.1), (2.7) 
is very complicated. It is accordingly done by computer using the program,given in /3/. 

After these substitutions, Eq.(2.10) can be represented in the form f6 = Ag where the 
function A is expressed in terms of 8(u1, na, us) and its derivatives and g is a homogeneous 
form of third order in the derivatives- ul,, (i,j = 1,2,3;j< i) (the expressions for A and g are 
quite complicated and are therefore omitted here). 

On the other hand, from Eqs.(2.1), (2.7) and the conditions M,,#O, we obtain the 
equality g = &M,,A (A ss 8 (ul, us, ~,)/a (xl, I*, I~)). Therefore, if g = 0, then A = 0. But then 
Eqs.(2.1) lead to a contradiction with the functional independence of ul, ulr uQ. We thus must 
take 

A=0 (2.12) 

Remark 1. Eq.(2.12) is identical with one of the necessary conditions for the existence 
of a triple wave for such flows /l/. 

Remark 2. For system (2.1), (2.7) to be in involution it is necessary and sufficient 
that there exist matrices A,, A5, (i= i,2,3) such that /4/ 

The previous manipulations indicate that such matrices in this case are 

A,-A - B,.&() (i = i, 2.3) 

(E, is the 2x2 identity matrix and 6,j is the Kronecker delta). The general solution contains 
one arbitrary function of two arguments. 

Thus, (2.10) is a necessary and sufficient condition for the overdetermined system of 
differential Eqs.(2.1) to be in involution, and its general solution contains one arbitrary 
function of two arguments. 

3. Consider the case of the functional dependence uQ = Q,(u,,+)_ Substituting the 
expression for uQ into the system of equations of gas dynamics (l.l), (1.2), we obtain 
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(3.1) 

Transforming as in Sect.2, we obtain a new first-order equation 

fs = e.8%, + e,l*% + 2e,,e.l,Q,,, + x&l, (e,,, ui, ,, @, %, @ij) = 0 (3.2) 

The function fs is a homogeneous quadratic form in the derivatives 9,i, ni, j, and 9 is 
a linear function in e,* (i, j = 1,2)_ 

The case <x,(Dijz =O reduces to the general solution for plane flow. We therefore must 

take ~@~,Z#O. Then, rotating the coordinate axes (z,,r*) we may ensure the condition CD,, # 0. 
i, j 

Analysing the first prolongation of system (3.1), (3.2) we conclude that consistency of 
the system of differential Eqs.(3.1), (3.2) requires yet another first-order equation: 

f,: = DsfS - b_DA f a,&,fa) - @,D,f, - @,D,f5 = o 

(ail = wk, j, ai, = @&3O,~,; i, j = 1, 2) 

As in Sect.2, the expression for fa was determined by computer. Substituting the main 
derivatives of the system of Eqs.(3.1), (3.2), we obtain fa = (@It2 - @,,@,,,)g = 0 with some 
function g. 

On the other hand, since we are considering a triple wave, the Jacobian A = a (ul, u*, eya 
h % 1) # o (otherwise y, ua, and 0 would be functionally dependent). Moreover, from the 
form of the function g it follows that g = U.&A. This in turn implies that g#O and 

Q,,? - @,,u$, = 0 (3.3) 

Thus, (3.3) are necessary and sufficient conditions for the existence of a triple wave 
when uJ= 0 (a,, us). As in the previous case, we have fazO, so that the system of Eqs.(3.1), 
(3.2) is in involution with the general solution containing one arbitrary function of two 
arguments. 

Remarks 3. Conditions (2.10) and (3.3) were obtained in /l/ under the assumption A#O. 
Here we have shown that this assumption is a necessary and sufficient condition for the exist- 
ence of triple waves. In addition to condition (2.10) (or (3.3)), two more equations on the 
location function were obtained in /l/ (by transforming the hodograph in Eqs.(2.1) or (3.1)). 
It was verified by computer that the equation f#= 0 is identically true under this transform- 
ation. We thus conclude that this system of two equations on the location function with a 
given function e = 6 (u,, u*, u8) (or ug = 0 (I+, up)) is also in involution and the general solution 
of the Cauchy problem has one arbitrary function of two arguments. 
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